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Long-standing debates about the role of natural selection in the growth of
biological complexity over geological time scales are difficult to resolve from the
paleobiological record. Using an evolutionary model—a computational
ecosystem subjected to natural selection—we investigate evolutionary trends in
an information-theoretic measure of the complexity of the neural dynamics of
artificial agents inhabiting the model. Our results suggest that evolution always
guides complexity change, just not in a single direction. We also demonstrate
that neural complexity correlates well with behavioral adaptation but only when
complexity increases are achieved through natural selection „as opposed to
increases generated randomly or optimized via a genetic algorithm…. We conclude
with a suggested research direction that might be able to use the artificial neural
data generated in these experiments to determine which aspects of network
structure give rise to evolutionarily meaningful neural complexity.
[DOI: 10.2976/1.3233712]
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Although single-celled organisms may be
every bit as well adapted to their ecological
niches as human beings are to theirs, no one
would argue that microorganisms are as com-
plex as human beings, using any metric of
complexity one might choose. Furthermore,
looking at the fossil record it is clear that com-
plexity, again by any metric, has increased over
geological time scales (Carroll, 2001), from al-
gae to plants, from ediacarans to arthropods to
insects to mammals. Although this progression
may not have taken the form of a simple ladder
or ratchet (Gould, 1994), and due to horizontal
gene transfer, endosymbiosis, and hybridiza-
tion, our concept of the organization of branch-
ing species may have gone from tree to bush to
thicket; we nonetheless have samples of a great
many intermediate levels of complexity in the
fossil record (and alive today) between micro-
organisms and human beings.

A natural question to ask is, how did this
complexity arise? Does evolution itself foster
a continuing escalation of organismal com-
plexity? Will all evolutionary systems and all
biologies produce such increases, thus produc-
ing intelligent life wherever life itself gains a
foothold?

There have been many good arguments in
support of the oft-held view that evolution is

biased toward increasing complexity. Rensch
(1960a, 1960b) and Bonner (1988) argued that
more parts will allow a greater division of labor
among parts, and since this greater division of
labor will confer an evolutionary advantage,
evolution naturally favors a continuing in-
crease in complexity as measured by a count of
fundamental components. Waddington (1969)
and Arthur (1994) suggested that due to in-
creasing diversity, niches become more com-
plex and are then filled with more complex or-
ganisms. Knoll and Bambach (2000) echoed
and expanded on this argument concluding that
evolution into an ever-increasing “ecospace”
will confer a continual growth in complexity.
Saunders and Ho (1976) and Katz (1987) sug-
gested that component additions are more
likely than deletions because additions are less
likely to disrupt normal function, again result-
ing in an evolutionary increase in complexity
as measured by parts. Kimura (1983), Huynen
(1996), and Newman and Engelhardt (1998)
demonstrated the value of neutral mutations in
bridging gulfs in fitness landscapes through the
selection for novel functions in previously neu-
tral changes. These neutral mutations fre-
quently take the form of gene duplications—a
straightforward mechanism for increasing ge-
netic complexity.
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However, Maynard Smith (1970), Raup et al. (1973),
Gould (1989, 1994, 1996), and others questioned whether
the observed growth in complexity was the outcome of natu-
ral selection or simply, in Maynard Smith’s words, the “obvi-
ous and uninteresting explanation” of a sort of random walk
away from an immutable barrier of simplicity at the lower
extreme—a growth in variance relative to the necessarily low
complexity at the origin of life. Gould, in particular, argued
extensively that random chance not only plays a greater role
in evolution than previously understood but also is entirely
sufficient to explain the observed increases in biological
complexity over geological time scales. As part of an ex-
tended debate between them, Dawkins (1997) counter-
argued that evolution must be progressive and biased even if
that bias is not always in the same direction at the micro-
evolutionary scale—in keeping with our experimental re-
sults reported here.

Bedau et al. (1997) and Rechsteiner and Bedau (1999)
provided evidence of an increasing and accelerating “evolu-
tionary activity” in biological systems that, until Channon
(2001), were not observed in an artificial system. However,
attempts to characterize complexity trends in the paleonto-
logical record have produced mixed results at best (McShea,
1996; Heylighen, 2000; Carroll, 2001), leaving us with no
clear picture of the influence of natural selection on com-
plexity. For more than a decade McShea (1994, 1996, 2001,
2005) has attempted to clarify and, where possible, empiri-
cally address the debate, by identifying distinct classes of
complexity and, importantly, by distinguishing between
“driven” trends in which evolution actively selects for com-
plexity and “passive” trends in which increases in complex-
ity are due simply to Gould’s asymmetric random drift.

A number of researchers have used simple computational
models of branching clade lineages to study driven vs pas-
sive trends in the evolution of complexity. Raup et al. (1973)
looked exclusively at branching patterns. Raup and Gould
(1974) used a ten-parameter vector to represent morphologi-
cal characters. In McShea (1994), a single numerical param-
eter takes the place of complexity and biased or unbiased
anagenetic (intraspecies) and cladogenetic (branching) ran-
dom variation produces different populations. In all of these
efforts, the distribution and statistics of the resulting popula-
tions are then at least roughly compared to the distribution
and statistics of biological species over time in order to try to
discern the presence or absence of any inherent bias in bio-
logical evolution. They largely conclude there is reason to
doubt any systematic bias toward increasing complexity.
Raup and Gould went so far as to suggest that “undirected
selection may be the rule rather than the exception in nature.”
However, they base their arguments on the ability of random
systems such as theirs to produce clade histories and tempo-
ral lengths of continuously changing characters that are
merely similar to biological systems. They acknowledge that
directional selection exists but emphasize that since the tem-

poral geometry of evolutionary phenomena can also be pro-
duced within purely random systems, such geometric pat-
terns are insufficient to unequivocally imply directed causes.

McShea uses his model to conclude that a biased system
will necessarily exhibit an increase in the minimum com-
plexity present in the system and this observation has
become common wisdom (Wagner, 1996; McShea, 2001;
Carroll, 2001). The presence of a multitude of minimum
complexity, single-celled organisms today is then taken as
evidence against a biased evolutionary trend in complexity.
However, even though an increase in the minimum is evi-
denced in the most commonly reported version of McShea’s
model, he also notes that it is not always possible to use this
observation to distinguish a passive system from a weakly
driven one. Moreover, in a more realistic evolutionary sys-
tem in which fitness at smaller, less complex scales is rela-
tively independent of fitness at larger, more complex scales,
the system could possess a substantial positive bias at larger
scales without eliminating or even disadvantaging organisms
at the lower end of the spectrum. Indeed, in the real biologi-
cal realm, the largest, most complex organisms are them-
selves extremely hospitable niches for single-celled organ-
isms and, as opposed to competing with microorganisms in
any way, significantly increase their available resources.

One aspect of McShea’s model that tends to color its pre-
dictions, besides its sheer simplicity, is its use of an anage-
netic change parameter. This within-lineage change in-
creases the “complexity” of the lineage without producing a
new branch. While anagenetic change may be observable in
nature, fine-tuning some morphological or behavioral char-
acter of a species, we think it likely that nontrivial changes in
complexity will more commonly be associated with specia-
tion events suggesting that anagenetic changes in the model
should be of a substantially smaller magnitude than cladoge-
netic changes, which is not generally the case in McShea’s
experiments. Additionally, this kind of anagenetic change is
functionally equivalent to a cladogenetic branch followed by
an immediate extinction event of the ancestor lineage. With
McShea’s nominal set of model parameters, it is as if half of
all speciation events resulted in a fierce competition for the
same resources and the parent lineage always lost. But spe-
ciation is likely to be associated with adaptation to a different
niche, so again this anagenetic change component of the
model is likely to produce an unrealistic trend in population
statistics. McShea (1994) acknowledged a dramatically
lower, nearly unmeasurable rate of growth in the observed
minimum in a purely cladogenetic model compared to a
mixed anagenetic and cladogenetic model. It is therefore
clear that reducing or eliminating this anagenetic component
will significantly reduce the observed growth in the mini-
mum for positively biased systems.

Another aspect of McShea’s model that is likely to skew
the results relative to a more realistic model of evolution is
his choice of extinction rates. At first glance it is difficult to
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fault his simple, seemingly unbiased choice—a small, con-
stant extinction rate that applies equally to all lineages. But
particularly since his increasing numerical parameter is sup-
posed to represent complexity, it may well be important to
recognize that complex things break down more easily than
simple things. Farmer and Griffith (2007) studied the robust-
ness of self-reproducing machines and derived an intriguing
functional relationship between viability and complexity that
might improve McShea’s model. An even greater effect on
extinction rates might be due to population size. A small
population is obviously more easily extinguished than a large
population. Accounting for actual population differences be-
tween microorganisms and mammals, say, while difficult to
even estimate, would almost certainly produce an essentially
negligible extinction rate for the former relative to the latter.
Simply accounting for reasonable growth rates relative to lin-
eage origin times is likely to yield a substantial difference in
extinction rates between later, more complex lineages and
earlier, simpler lineages. We would expect the modification
of extinction rates according to these viability and popula-
tion principles in a McShea-like model to substantially re-
duce any growth in the minimum for driven systems.

Given the limitations of these simple models and the dif-
ficulties and ambiguities one finds when studying the paleon-
tological record, it makes sense to turn to computer models
that actually employ evolution to investigate the question of
evolutionary trends in complexity. Turney (1999, 2000) used
a simple evolutionary model to suggest that increasing
evolvability is central to progress in evolution and predicts
an accelerating increase in biological systems that might
correlate with complexity growth. Adami et al. (2000) and
Adami (2002) defined complexity as the information that an
organism’s genome encodes about its environment and cal-
culates a complexity metric that is inversely proportional to
the entropy of its genetic elements (bits in simulation, base
pairs in biological genomes). His AVIDA software has been
used to show that asexual agents in a fixed, single niche al-
ways evolve toward greater complexity of this uniquely de-
fined type. Although we believe there is little doubt that Ad-
ami’s observation regarding genes encoding information
about the environment is both true and important, we suspect
that his “complexity” metric is better viewed as a measure of
a species’ adaptation to an environment or, more simply and
directly, a measure of genetic consistency due to its failure to
account for multiple species, multiple and variable niches,
niche creation, or any kind of biodiversity.

In previous work (Yaeger and Sporns, 2006), we have
used our computational ecosystem software, Polyworld, to-
gether with an information-theoretic measure of neural com-
plexity to demonstrate that complexity of this particular type
does increase over evolutionary time scales. That earlier
work, however, did not distinguish contributions from natu-
ral selection versus contributions from Gould’s random walk.
Basically, there was no “null model” to compare with in that

early work and since the seed population used to initialize
those simulations consisted of very low-complexity agents,
we could not rule out Maynard Smith’s obvious and uninter-
esting explanation. Subsequently (Yaeger et al., 2008), we
established a mechanism for running a kind of null model in
Polyworld and were able to tease out the differing contribu-
tions of natural selection and random drift, and thus demon-
strated a statistically significant selection for complexity
growth under certain circumstances. However, perhaps pre-
dictably, the story was not as simple as “evolution selects for
complexity growth.” Rather, it proved to be the case that evo-
lution, as Dawkins argues, always drives complexity growth
(or loss or stabilization) in a biased fashion; however, it is
also the case that evolution does not always drive complexity
in the same direction, as will be discussed below. We also
show that periods of complexity growth correspond to peri-
ods of behavioral adaptation, consistent with the findings of
Seth and Edelman (2004) suggesting our neural complexity
metric is a good measure of what might be considered primi-
tive and adaptive forms of intelligence. However, we further
demonstrate that not all forms of neural complexity confer
an evolutionary advantage suggesting that in order to relate
artificial neural network models to biological brain networks
it may be necessary to study networks specifically evolved
for their behavioral adaptations in an ecological context sub-
ject to natural selection.

Note that variants on the word “guide” take on more than
one meaning herein. Like most of the papers in this special
issue on “guided self-organization,” we sometimes refer to
human intervention and selection of outcomes in otherwise
self-organizing processes. This is particularly the sense when
we discuss the use of complexity as a fitness function ex-
pressly guiding evolution. We also conclude with remarks on
future research directions that include possible uses of this
work to further hone and guide evolution’s outcomes in our
artificial life models. But throughout most of the paper we
are addressing the degree to which natural selection, itself
the overarching self-organizing process for all of biology,
“guides” the evolution of organismal complexity, in a biased
(or unbiased) fashion. With the distinction made, usage
should be clear from context.

SIMULATION SOFTWARE
The software model used for this study is Polyworld (Yaeger,
1994), an evolutionary model of a computational ecosystem,
populated by haploid agents with a suite of primitive, neu-
rally controlled behaviors (move, turn, eat, mate, attack,
light, and focus). The artificial neural networks (ANNs) that
control these agents use “summing and squashing” (a.k.a
“firing rate”) neurons and perform Hebbian learning at the
synapses. The architecture of the ANN is derived from the
agent’s genome, expressed as a number of neural groups of
arbitrary excitatory and inhibitory neuron counts, along with
connection densities, topologies, and learning rates between

A RT I C L E

HFSP Journal



these neural groups and types. Input to the ANN consists of a
row of pixels from a rendering of the scene from each agent’s
point of view, like light falling on a retina. Although agent
morphologies are simple and static, agents interact with the
world and each other in fairly complex ways. They reproduce
through the simultaneous expression of a mating behavior by
two collocated agents.

The agents’ energy stores are normally depleted by all ac-
tions, including neural activity with stronger actions (higher
behavioral neuron activations) and larger neuron and syn-
apse counts depleting more energy. To simplify the analysis
the per-neuron and per-synapse neural costs have been elimi-
nated for this series of experiments; all behavior-based costs
have been retained. Energy is also depleted when one agent
is attacked by another. Energy must be replenished by seek-
ing out and consuming food in the environment or by killing
and eating other agents. Minimum and maximum population
sizes are controlled by proportionately decreasing energy
costs as the population dwindles and increasing energy costs
as the population swells. In its normal mode of operation all
evolutionary pressures emerge from a process of natural
selection—the survival and reproduction of the agents—and
there is no influence of any kind from a fitness function (al-
though an ad hoc heuristic fitness function is computed for
purely informational purposes).

Polyworld was originally designed to explore the possi-
bility of open-ended evolution of artificially intelligent
agents. Figure 1 shows the Polyworld evolutionary ecosys-
tem and various attendant graphical elements. For further
background on the simulation software please see Yaeger
(1994).

COMPLEXITY
To be useful scientifically, complexity must be quantifiable.
Complexity for the purposes of evolutionary biology has
taken many definitions and forms over the years, from organ-
ism size (Cope, 1871) to distinct cell types (Bonner, 1988;
Valentine et al., 1994) to morphology (Thomas and Reif,
1993; McShea, 1993) to ecological webs of interaction
(Knoll and Bambach, 2000). Information theory (Shannon,
1948) has produced various methods for defining and quan-
tifying complexity that might be suitable for the study of bio-
logical and evolutionary processes but most such measures
share an undesirable trait with Shannon entropy, which is that
they are maximized by random systems in which all states
are equiprobable. By contrast, biological complexity corre-
sponds to neither minimal nor maximal entropy but some-
thing in between. Although unaware of his work at the time,
the inventors of the complexity measure used here shared an
insight with Chaitin (1979): the way information flows

Figure 1. The Polyworld evolutionary ecosystem. The multicolored trapezoids are the agents �with color denoting certain behaviors and
genetics�: bright green blocks are food; the brown walls are the barriers the agents cannot pass through. All actions take place on the dark
green ground plane. Also shown along the top are certain graphical statistics �left�, the point of view of all agents in the world �left-center�, a
brain connection matrix �center�, an overhead detail view �right-center�, and a few numerical statistics �right�.
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across multiple scales relates directly to the internal structure
of a system. Chaitin also defined a “measure of mutual infor-
mation for n-tuples” that presages a key component of our
complexity measure (integration, a.k.a multi-information);
however he stopped short of applying these insights to his
algorithmic entropy measure of complexity.

Tononi et al. (1994) proposed an information-theoretic
measure for quantifying the complexity of neural dynamics,
applicable to arbitrary sets of random variables, which
avoids maximization by randomness, instead capturing
quantitatively the manner in which information is processed
at multiple scales. Widely acknowledged as an important
conceptual milestone in the measurement and understanding
of complexity, the Tononi–Sporns–Edelman measure is now
commonly referred to as “TSE complexity” (for the authors’
initials). A simpler, much more computationally efficient
measure was subsequently proposed in Tononi et al. (1998)
and explored computationally in Sporns et al. (2000). The
methods were subsequently refined in Lungarella et al.
(2005) and released as a MATLAB Complexity Toolbox,
currently maintained at http://www.indiana.edu/~cortex/
complexity_toolbox.html/. In order to be able to process the
neural dynamics from hundreds of neurons for thousands of
agents, per each of the many simulations, the simplified TSE
complexity measure was re-implemented in C++ and is what
we use and refer to throughout the remainder of the paper as
“complexity” or C.

Although nontrivial to derive and implement, the intu-
ition behind the original TSE complexity is straightforward:
cooperation among various elements of a network, called in-
tegration and measured by a multivariate extension to mutual
information, increases network complexity, to a point. But
specialization of network subunits, called segregation, also
increases network complexity. Segregation produces a dif-
ference between an estimate of integration that is uniformly
distributed across all scales (subsets of units) and the actual
measured integration at these different scales. This differ-
ence is what TSE define as complexity. Maximal complexity
is thus achieved in networks that maximize both integration
and segregation—both cooperation and specialization–to the
extent possible. The original TSE complexity is given by

CN�X� = �
k=1

n ��H�Xj
k�� −

k

n
H�X�� , �1�

where H�X� is the Shannon entropy of the entire system of n
variables, k is the size of a subset of variables, and j indicates
that the ensemble average �H�Xj

k�� is to be taken over all
n ! / �k ! �n−k�!� combinations of k variables. The simplified
approximation looks only at the first subset term, involving
mutual information between individual variables and the rest
of the system, or cast in terms of entropies

C�X� = H�X� − �
xi�X

H�xi�X − xi� , �2�

where H�X� is again the entropy of the entire system and the
H�xi �X−xi� terms are the conditional entropy of each of the
variables xi given the state of the rest of the system.

NATURAL SELECTION „DRIVEN… VS RANDOM DRIFT
„PASSIVE…
Although it would be difficult to eliminate natural selection
from an evolving biological ecosystem, artificial ecosystems
such as Polyworld are more flexible. In order to distinguish
between driven trends in complexity due to natural selection
vs passive trends due to random genetic drift, we designed a
“lockstep” mode of operation for the simulator in which a
passive run, where natural selection is disabled, is tied to a
driven run, where natural selection operates like normal.
First the normal, driven simulation is carried out during
which all agent births and deaths are recorded (along with all
relevant neural data). Then the lockstep, passive simulation
is carried out in which agents are not allowed to reproduce or
die as a result of their own behaviors. Instead, every time an
agent died in the driven simulation, an arbitrary agent in the
passive run is chosen at random and killed. Similarly, every
time two agents reproduced and produced an offspring in the
original, driven simulation, two arbitrary agents in the pas-
sive run are bred at random and the resulting offspring is
placed at a random location in the world.

By this method, population statistics between the driven
and passive runs are identical. As a result, the statistics of all
genetic operations—crossovers and mutations—are compa-
rable between the paired runs. The number of crossover
points and mutation rates are themselves embedded in the
genome (Yaeger, 1994), so the genetic operations are only
the same statistically, not in detail. Similarly, the “life expe-
riences” of a given agent—its trajectory through the world
and the inputs to its visual system—are only comparable sta-
tistically between paired runs. Since the agents’ life experi-
ences do have an impact on the values of neural complexity
we compute, this may produce some differences between
paired runs but we do not expect this to have a large influ-
ence, due to a combination of statistically similar environ-
ments (and therefore similar visual inputs) and only mod-
estly different observed agent trajectories in these paired
runs. Due to the resulting consistency in visual environment,
the controlling statistics, such as the entropy and mutual in-
formation in the visual inputs, should be comparable be-
tween paired runs, thus producing comparable complexity
values. Regardless, specifically because complexity is af-
fected by agent behaviors and their resulting sensory inputs,
one could argue that agents in lockstep runs must be allowed
to control their own actions in order to obtain valid measures
of their neural complexity. So even though we expect ob-
served complexity differences to be primarily the result of
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differences in neural architecture, any differences due to
agent behaviors and resulting life experiences are appropri-
ately included in the comparisons.

The effective result is that natural selection is “turned on”
in the driven runs and “turned off ” in the passive runs. For
example, gene states are subject to natural selection, based
on the evolutionary viability—the fitness—of the agents’ be-
haviors in the driven runs, while gene states are subject only
to the same degree of variation, with no evolutionary fitness
consequences or effects, in the passive runs. The passive run
serves as our null model, thus allowing us to distinguish be-
tween complexity growth due to natural selection vs that due
to a random walk in gene space.

Note that while genetic changes in both the driven and
passive cases produce different neural architectures, neural
dynamics, and agent behaviors, in the passive case (only)
these changes have absolutely no impact on the reproductive
success of agents. Thus this random walk in gene space cor-
responds to and produces a random walk in complexity space
(as measured by the neural dynamics), without regard for the
evolutionary value of that complexity or the corresponding
agent behaviors. By contrast, in the driven case the variations
in neural structure and function and resulting behavioral ad-
aptations produced by these genetic changes directly affect
the agents’ reproductive success. Accordingly, there is no ex-
pectation of any strict correlation between the agents’ behav-
iors in the driven and passive runs. Especially, there is no
expectation that agents in the passive runs will exhibit the
kinds of foraging and mating behaviors seen in driven runs.

DATA GENERATION AND ACQUISITION
A simple world was set up in Polyworld that accommodated
between 90 and 300 agents, grew food uniformly and ran-
domly in two patches at opposite ends of the world (80% at
one end and 20% at the other), positioned two barriers that
ran 90% of the depth of the world, and divided the world into
thirds across its width (see Fig. 1). The agents were allowed
to evolve between zero and five internal neural groups with
up to 16 excitatory and 16 inhibitory neurons per group. In-
put neural groups, internal neural groups, and output/
behavior neural groups were connected according to evolved
connection densities specified in the agents’ genomes. This
allows up to 217 neurons and 45,584 synapses. Each simula-
tion was allowed to run for 30,000 time steps, which corre-
sponds to about 400 generations. For each run, the neural
activation of every neuron, at every time step, for every agent
is recorded to disk, yielding approximately 10 GB of data. It
is this data to which we subsequently apply our complexity
calculations, thus allowing us to determine the neural com-
plexity of each individual agent. Note that an agent’s com-
plexity is only fully determinable upon its death—when its
neural activation time series is complete. We therefore exam-

ine mean trends in the population’s complexity for all agents
that have died during a particular time interval—typically
every 1,000 time steps.

Ten driven runs were carried out, in which natural selec-
tion operated normally, varying only the initial seed to the
random number generator. A corresponding passive “lock-
step” run, in which natural selection was disabled, was car-
ried out for each of the driven runs yielding 20 simulations in
all.

The runs were all seeded with a population of agents
based on a uniform genome. This seed genome was designed
to produce modest dispositions toward potentially useful be-
haviors, such as running toward green (food) and away from
red (attacking agents); see Yaeger (1994) for details on color
use in Polyworld. However, these seed agents are not a viable
species. That is, test runs have demonstrated that without the
ability to evolve the seed agents will fail to survive and re-
produce in numbers sufficient to sustain their population, as
a result of which their population will dwindle and go ex-
tinct. There must therefore be a significant evolutionary
value to some kind of rewiring of the genome and resulting
neural network architectures as a result of natural selection,
at least until such point as the agents’ behaviors are suffi-
ciently adapted to the environment to sustain their numbers
through their foraging and mating behaviors. The genome
used in this seed population produces neural architectures
that are nearly minimal in size and complexity, so one should
expect the random variations in gene space associated with
the passive, lockstep runs to also yield increases in complex-
ity, as indeed they do. It is primarily the differences in the
rate of change in complexity between driven and passive
runs that are used to assess the role of natural selection in
complexity increase.

Complexity may be calculated for various subsets of
neurons—all neurons, just the input neurons, just the behav-
ior neurons, or the “processing” neurons (all neurons except
inputs). All complexities presented here are based on the pro-
cessing neurons, although, in general, there are few differ-
ences in complexity trends between all neurons and process-
ing neurons. Complexity then varies as evolution produces
changes in the parts of the genome that specify the neural
architecture and thus alters the internal neural dynamics and
resulting behaviors of the agents.

COMPLEXITY AS A FITNESS FUNCTION
Given a system such as Polyworld that is capable of evolving
a wide range of neural architectures and using them to con-
trol a fairly broad range of agent behaviors, and given the
ability to then calculate an information-theoretic measure of
complexity for these agents’ neural networks, an intriguing
possibility presents itself: why not dispense with natural se-
lection altogether and instead directly employ neural com-
plexity as a fitness function, in the traditional genetic algo-
rithm (GA) sense? To investigate the fruitfulness of such an
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approach, in addition to the paired driven vs passive runs just
described, we carried out a small number of simulations us-
ing neural complexity as a fitness function. This required us
to run Polyworld in a unique, third (neither normal nor lock-
step) simulation mode in which it acts as a steady-state GA.
In this mode the simulator retains a list of the N (typically 30)
best agents that have ever lived, according to a specified fit-
ness function. For these runs we computed neural complexity
of the processing units for each agent upon its death and used
this complexity directly as a measure of the agent’s fitness.
Then, only in this steady-state GA mode, upon the death of
each agent the software takes an incremental step through the
list of N best agents, using a pair of indexes, one of which
only increments when the other index finishes its run and
wraps around, and uses the two agents identified by these in-
dexes to produce an offspring, employing the usual mecha-
nisms of crossover and mutation. (A simple experiment us-
ing a fitness function of 1/ �velocity+1�, in which agents were
successfully evolved to maintain near zero velocity population-
wide, was used to validate this technique.) Results of these
simulations will be discussed below.

RESULTS AND DISCUSSION
The resulting population-mean complexities for all 20 simu-
lations are shown with light lines (solid for driven, dashed

for passive) in Fig. 2, along with additional, bold lines corre-
sponding to the means of the two classes of runs (driven vs
passive). In addition to the simulation results, a measure
of statistical significance is shown at the bottom of the graph.
The fine dotted line shows 1−p-value for the dependent stu-
dent’s T-test. The horizontal dashed line at 0.95 thus cor-
responds to a p�0.05 critical threshold. Where the dotted line
rises above the dashed line, the difference between the driven
and passive runs may be considered statistically significant;
where it falls below, the difference is not significant. Where the
driven and passive mean complexity values cross �t=7,000�
significance drops almost to chance (0.5), as one would expect,
but displayed values have been truncated below to 0.8 for clar-
ity.

The first thing to note is that during the early stages of the
simulation evolution is actively selecting for increasing com-
plexity. This is consistent with our observation that the seed
population is too simple to sustain its numbers and must
evolve or become extinct. As long as complexity is of an evo-
lutionary advantage, natural selection will behave in this bi-
ased, driven fashion with regard to complexity.

However, note that any statistical significance has disap-
peared by about t=4,000 and indeed, the mean passive com-
plexity reaches the same level as the mean driven complexity by

Figure 2. Driven and passive complexity vs time. Light solid lines show population-mean complexity for individually driven, natural
selection runs. Light dashed lines show population-mean complexity for individual passive, lockstep runs. Heavy lines show means of all ten
runs for corresponding line style. Light dotted line at bottom shows 1−p-value for a dependent student’s T-test with a horizontal p�0.05
T-critical dashed line at 0.95.
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about t=7,000. At roughly the point that statistically significant
differences disappear, the driven complexities produced by
natural selection begin to plateau. What is going on is that by
this stage, a “good enough” solution has emerged and begun to
spread throughout the population, as evidenced by the peaked-
ness of the temporal histogram of complexity in Fig. 3(a). From
this time forward, in the majority of the simulations, natural se-
lection tends to act as a weakly stabilizing force, maintaining a
nearly constant mean level of fitness in the population. Since
most genetic variation at this point is likely to be of a deleterious
nature, evolution acts to weakly maintain this good enough so-
lution. Meanwhile, the random walk continues in the passive
runs, thus increasing variance in the genes and in complexity, as
evidenced by the flat, broadened complexity distributions of
Fig. 3(b). The growing variance produces networks of greater
and greater complexity—now significantly exceeding that of
the driven runs, on average.

The stabilization effect consistently observed in driven
runs is, however, only a weak effect, as attention to the indi-
vidual driven runs—the light, solid lines—reveals that in
several of the runs, in a kind of punctuated equilibrium,
variation eventually produces a network that is sufficiently
better adapted to the environment that its genes spread
throughout the population causing the mean level of com-
plexity in the population to rise again. These new driven so-
lutions reach approximately the level of the passive complex-
ity and then plateau once again at this new, higher level. With
more evolutionary time it is possible that more of the driven
runs would make at least this secondary leap in complexity,
bringing the overall mean driven level of complexity up to
the level of complexity seen in the passive runs or higher.

The overall mean passive complexity also plateaus in
these runs but for a much less interesting reason. By about
t=10,000 the bits of the agent genomes have been fully ran-
domized to roughly 50% on and 50% off.At this point, variance
is at a maximum in the model and further randomization merely
shuffles bits around without any change in the mean values of
the genes that control the topology of the neural networks. It is
due to the fixed size genome and fundamentally linear interpre-
tation of genes in Polyworld that such an upper bound on vari-
ance exists and once maximum variance is reached the passive

runs cease to characterize a truly random walk. Complexity
would, of course, continue to increase in an unbounded random
walk, which would only increase any statistical significance of
differences between passive and stabilized driven trends ob-
served at these later times.

Note that final complexities range from about 0.25 to
0.35 and contrast this to the 0.9 level of complexity achieved
by a steady-state GA simulation using complexity as its fit-
ness function, as shown in Fig. 4. The factor of three multi-
plier indicates that this method for evolving larger values of
complexity certainly works. However, the behaviors of the
agents in this complexity-as-fitness run are not well suited to
the normal evolutionary constraints of life in Polyworld. The
agents do not forage for food. There is no indication that they
seek out other agents for reproduction. This run was seeded
with agents based on the same seed genome as the driven and
passive runs. So initially they are not particularly well suited
to their environment. After about 6,000 or so time steps, at a
moderate level of complexity (around 0.75), most of the
agents have adopted a stereotypical tight turning behavior,
all spinning in small loops, and ignoring food and other

a b

Figure 3. Population histograms of complexity over time for a driven run „a… and a passive run „b….
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agents. We note that this behavior produces fairly high en-
tropy while maintaining a significant degree of mutual infor-
mation in the sensory units (due to adjacent pixels being cor-
related and some degree of frame-to-frame coherency), thus
producing a fairly high degree of complexity throughout the
network. Later, near peak complexity the agents’ behaviors
have become more interesting and more varied (although
some tight-looping agents remain) but they still do not ex-
plicitly seek food, and there is still no evidence of any sub-
stantial degree of agent-agent interactions (such as would be
required for reproduction).

The driven vs passive simulation results clearly demon-
strate that in this model system natural selection will drive
increases in complexity, in a biased fashion. Furthermore, it
is not unreasonable to expect results from the model to apply
to biological systems, since, even though Polyworld provides
only an abstract model of biological evolution, the principle
in action here is, at its base, simply natural selection—an am-
plification of advantageous traits. The mechanisms of action
and behavior obviously differ between model and biology,
and there will be differences in the specific costs and benefits
between biological agents and artificial agents (just as there
are between one biological agent and another). However,
there will always be cost/benefit tradeoffs in competition and
niche exploitation for any evolutionary ecosystem, real or ar-
tificial, and it is these tradeoffs that evolution explores. As
long as increases in complexity improve the ability to survive
and reproduce by agents so advantaged, those complexity in-
creases will be actively selected for. The subsequent plateau
in driven complexity seen here, due to the widespread adop-
tion of a good-enough strategy that acts as a kind of local
optimum, demonstrates how evolution can act to serve as a
weak stabilizing force for complexity, thus echoing and pro-
viding a concrete example of Dennett’s (Dennett 1996) ob-
servation, “The cheapest, least intensively designed system
will be ‘discovered’ first by Mother Nature, and myopically
selected.”

Yet when variation produces a sufficiently improved net-
work and corresponding set of behaviors, natural selection
draws a punctuation mark on the old era and ushers in a new
equilibrium, as so often observed in nature.

Furthermore, the early period during which the growth
rate of complexity in the driven runs exceeds that in the pas-
sive runs corresponds to a period of behavioral adaptation of
the agents. Prior work (Griffith and Yaeger, 2006) demon-
strated that Polyworld agents evolve a near ideal free distri-
bution (IFD) of agents to resources (Fretwell and Lucas,
1970; Fretwell, 1972), for a variety of different distributions
of food in patches. In these simulations agents have evolved
to mostly inhabit the food patches, in IFD proportions by ap-
proximately t=4,000 and exhibit little change in food patch oc-
cupation beyond about t=7,000 (see Fig. 5). These times corre-
spond to the period when driven complexity reaches its peak
and plateaus and after which passive complexity surpasses

driven complexity.The ecosystem simulated here is deliberately
simple and it is sufficient for the agents inhabiting it to forage
and find mates efficiently, which conditions are satisfied by sim-
ply occupying these fixed food patches and frequently express-
ing their eating and mating behaviors. This behavioral adapta-
tion is reflected in the approach to IFD conditions and
corresponds directly to the period of increasing neural complex-
ity when natural selection drives genetic change. When genetic
change and corresponding changes in neural complexity are
random, however, as in the passive runs, agents (predictably)
never adopt an IFD, thus demonstrating that our neural com-
plexity metric and behavioral adaptation are not intimately
bound when natural selection is absent.

The complexity-as-fitness-function results also demon-
strate that this measure of neural complexity is not uniquely
tied to behavioral adaptation and evolutionary fitness—to the
kinds of survival and reproduction that an evolutionary bi-
ologist would construe as fitness. So complexity of a behav-
ioral network’s dynamics alone is not sufficient to guarantee
survival of an agent, or selection by evolutionary pressure.
Although this seems at odds with the much more direct cou-
pling of behavior and complexity found in a task discussed
by Sporns and Lungarella (2006) in which a robotic arm at-
tempts to grasp a randomly moving block, the discrepancy is
almost certainly due to significant differences in the range of
possible behaviors, environments, and sensory inputs in
these two experiments. In the work by Sporns and Lun-
garella, evolving the robot for maximum complexity pro-
duced block-grasping behaviors as efficient as when the ro-
bot was evolved to perform the block-grasping task directly.
But in their experiment, aside from the block, the environ-
ment was empty or consisted of random noise and the only
way to provide nonrandom sensory input to the controlling
network, and thus increase the complexity metric, was to at-
tend to that block. By contrast, in Polyworld, the environment
contains appearing (growing) and disappearing (eaten) food,
other structural artifacts (the barriers), and most signifi-
cantly, many other agents behaving according to their own
network dynamics, providing a rich and varied source of vi-
sual complexity. Each Polyworld agent also expresses con-
trol over a suite of seven primitive behaviors, most of which
directly affect that agent’s experience of the world. All these
additional sensory inputs and multiple low-level behaviors
produce a complicated, nonunique relationship between the
complexity of the agent’s neural dynamics and any resulting
higher order behaviors. It is the extreme difference between
the agents’ sensoria and possible sources of complexity be-
tween this work and that of Sporns and Lungarella that we
believe accounts for the marked difference in correlation be-
tween complexity and behavior in the two studies.

While the driven results show that TSE complexity is
well correlated with the evolution of adaptive behaviors in an
ecosystem subject to natural selection, the fact that complex-
ity in the passive case ultimately surpasses that in the driven
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case demonstrates that such a correlation does not exist
when natural selection is absent. This is consistent with the
complexity-as-fitness-function results, where, again, com-
plexity growth in the absence of natural selection is shown
to be uncorrelated with evolutionarily useful behavioral
adaptation.

CONCLUSIONS
Three key components—a computational ecosystem capable
of carrying out synchronized natural-selection and null-
model simulations, a resulting wide array of evolved neural
network architectures, and an information-theoretic metric
for capturing the complexity of the neural dynamics in these
networks—has allowed us to ask questions and observe
trends that are difficult to pose and assess by any other
means. By “replaying the tape of life” (Gould, 1989) in these
novel ways, we have been able to investigate evolutionary
trends in complexity, a subject much discussed and debated
since Darwin. Our results demonstrate a clear natural selec-
tion for complexity in a driven, biased fashion. But they also
show a tendency to weakly stabilize complexity at a “just
good enough” level. Although our work does not specifically
address it, there is little doubt that evolution will, under the
right circumstances, select in a driven sense against com-
plexity, such as when dark-dwelling organisms in a cave give

up their eyes to avoid wasting energy on unneeded complex-
ity. Thus it can be seen that, at the scale of individuals com-
prising a species, evolution always guides trends in complex-
ity.

But the scale of the discussion matters a great deal. Gould
(1996) and Dawkins (1997) argued strongly for passive and
driven evolutionary trends, respectively. However, much of
their disagreement seems to stem from an issue of scale. Our
work agrees with Dawkins’s claim that evolution is always
driven—at the level of individuals comprising a species. But
integrating over an entire biome’s collection of increasing,
decreasing, and stabilized trends in complexity is likely to
produce a process that at least appears random, at the larger
scale. In one of the earliest attempts to model evolution com-
putationally in order to address these kinds of questions,
Raup et al. (1973) observed that fully deterministic trends at
small scales may very well be at the base of larger scale
trends, even if those larger scale trends turn out to be passive.
Our current simulations reinforce this notion of natural se-
lection driving the evolution of complexity at small scales,
but driving it in all directions—up, down, and stable. So
larger scale trends are likely to be obfuscated by these oppos-
ing trends at the smaller scale, and the often conflicting and
inconclusive evidence for trends in the paleobiological
record is unavoidable and to be expected.

Figure 5. Distribution of agents to heterogeneous resources. In the driven case �solid lines� agents approach an IFD over the same time
period that evolution actively selects for complexity growth. In the passive case �dashed lines� they do not.
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Finally, by looking at a specific adaptation—the
evolution toward behaviors resulting in an ideal free
distribution—we were able to demonstrate a correlation be-
tween our measure of neural complexity and behavioral ad-
aptation. But results from the driven vs passive study and the
complexity-as-fitness-function study make it clear that this
correlation only applies when complexity gains are the result
of natural selection.

FUTURE DIRECTIONS
At this stage it is only conjecture, but we suspect that, despite
Gould’s arguments, the evolution of complexity will be seen
to behave in a driven fashion at larger scales as well, and that
we have some hope of addressing this larger scale issue in
our model. If Waddington (1969), Arthur (1994), and Knoll
and Bambach (2000) were correct about complexity natu-
rally increasing due to an ever-expanding ecospace—a
continuing growth, production, and occupation of new,
more complex evolutionary niches—then increases in the
range, complexity, and ease of production of new niches in
Polyworld should be matched by a concomitant increase in
the complexity of the neural dynamics of the agents evolved
to occupy those niches. We hope there will be ethological
level, qualitative evidence for these complexity increases,
but regardless, our information-theoretic complexity mea-
sure will allow us to quantitatively assess any such trends.

Another area we hope to address in future research is a
principled assessment of the relationship between network
structure and function. Our process generates a substantial
record of network architectures and corresponding network
dynamics. The burgeoning field of Network Science has
demonstrated the value of applying graph theoretical meth-
ods to the understanding of a wide variety of natural and ar-
tificial systems. There is already evidence for a consistent
relationship between distributions of network motifs in
biological brains and complex artificial neural networks
(Sporns and Kötter, 2004; Alon, 2007). It may be possible
to identify network structural metrics in our data that are
predictive of complex network function. Initial steps in
this direction have shown that as complexity increases in
Polyworld nets, the clustering coefficient increases
and the average minimum path length decreases, suggesting
an evolution toward “small world” network characteristics
(Lizier et al., 2009). Interestingly, given the observed discon-
nect between complexity and behavioral adaptation when
natural selection is absent, it may even be important to carry
out this kind of analysis on networks evolved for their behav-
ioral, evolutionary effectiveness, rather than for arbitrarily
complex dynamics. Finally, if successful in characterizing
those network structures most likely to confer dynamical
complexity, we may be able to close the loop on guided self-
organization and apply our learned structural constraints to
the more rapid, more far-reaching evolution of artificially in-
telligent agents.
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