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Overview

- Why, What, and How
* Segmentation

* Neural Network Issues
* Search with Context

* Future Directions




Why Handwriting Recognition?

* Vertical Markets

* Insurance , \ :
: -l V\.-OJ
* Shipping

- Copy-Editing” 3

* “If it doesn't have a keyboard,
it's not a computer”

- Foreign Markets N
* Ideographic languages %Q/ @})(5




ANHR's Pipeline Architecture
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Integrated Segmentation and
Recognition

Characters?

* Constraints
A okes Vlust Be Used

* No Strokes May Be Used Twice

- Efficient Presegmentation
* Avoid Trying All Possible Permutations
- Based on Overlap, Crossings, Aspect Ratio,
etc.

* Full Printable ASCII Presents Some
Challenges

P Handwriting Recognition




Neural Network Classifier

* Inherently Data-Driven

* Learn from Examples

* Non-Linear Decision Boundaries




Context Is Essential

* Humans Achieve 90% Accuracy on
Characters 1n Isolation (for Our

Database)

* Word Accuracy Would Then Be ~ 60%
or Less (.975)

* Variety of Context Models Are Possible
* N-Grams
* Word Lists
* Regular Expression Graphs

* "Out of Context" Models Also
Necessary

* "xyzzy", Unix Pathnames, Technical/Medical
Terms, etc.




ANHR's Pipeline Architecture
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Segmentation




Segmentation
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Neural Network
Classifier




Network Design

° Variety of Architectures Tried

* Single Hidden Layer, Fully-Connected
* Multi- Fields

Architecture

- Anti-Aliased Images

» Baseline-Driven with Ascenders and
Descenders

» Stroke-Features




Network Architectures
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Network Architecture
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Normalized Output Error

- Based on Recognition of Fact that Most

Training Signals are Zero
* Training Vector for Letter "x"

A -

. 0100 0 ..

* Forces Net to Attempt to Make
Unambiguous Classifications

» Difficult to Obtain Meaningful 2nd and
3rd Choice Probabilities




Normalized Output Error

* We Reduce the BP Error for Non-Target

Classes Relative to the Target Class
* By a Factor that "Normalizes" the Non-Target
Error Relative to the Target Error, Based

g c Number of Non-larget vs. Targe

Classes

* For Non-Target Output Nodes
e' = 1 / d (N - 1)

outputs

* Allocates Network Resources to Model
Low-Probability Regime




Normalized Output Error

* Converges to MMSE Estimate of
f(P(class|input),A)

* We Derived that Function:
<é”> = p (1l-y)? + A (1-p) Yy°?
where

p = P(class|input),

A=1/4d (N _ 1)

outputs

* QOutput y for Particular Class 1s Then:
y=p/ (A -Ap+ p)

* Inverting for p:
p=yA/ (yA-y+t1)




Normalized Output Error

|
09t
08¢
0.7
0.6

P(cgr;ect) gj :

03
02¢
0.1¢

_,:/’:/’_
0 =0 | |G TR |

0 01 02 03 04 05 06 0.7 08 09 1
net output y

Empirical p vs. y histogram for a net trained with




Normalized Output Error

Error (%)
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Negative Training

Segmentation Code to Generate False

Segmentations

* Ink Can Be Interpreted in Various
Ways...

clog

n n

* "dog", "clog", "cbg", "%g"

n n

* Train Network to Compute Low
Probabilities for False Segmentations




Negative Training

* Negative Error Factor (0.2 to 0.5)
* Like A in Normalized Output Error
 Negative Training Probability (0.05 to 0.3)
* Also Speeds Training

* Too Much Negative Training

* Suppresses Net Outputs for Characters that
Look Like Elements of Multi-Stroke
Characters

(I, 1, 1, o, 0, 0)

* Slight Reduction in Character Accuracy,
Large Gain in Word Accuracy




Stroke Warping

P A T

* Produce Random Variations in Stroke
Data During Training

- Small Changes 1n Skew, Rotation,
X and Y Linear and Quadratic

S \.«ahus

* Consistent with Stylistic Variations

- Improves Generalization by Effectively
Adding Extra Data Samples




Stroke Warping

Original Rotation X Linear




Frequency Balancing

* Skip and Repeat Patterns to Balance
Class Frequencies

* Instead of Dividing by the Class Priors

* Produces Noisy Estimate of Low Freq. Classes
* Requires Renormalization

- Compute Normalized Frequency,
Relative to Average Frequency

F, =S,/ (1/C 38, )

J=1




Frequency Balancing

* Where a (0.2to00.8) Controls Amount of
Skipping vs. Repeating

* And b (0.5t00.9) Controls Amount of
Balancing




Error Emphasis

Probablhsucally Sk1p Training for

Patterns

* Just One Form of Error Emphasis
* Can Reduce Learning Rate/Error for Correctly

* And Increase Learning Rate/Error for
Incorrectly Classified Patterns




Training Probabilities and
Error Factors
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Annealing

- Start with Large Learning Rate, then

Decav
UV\/“J

* When Training Set's Total Squared Error

TRCTYCascsS

- Start with High Error Emphasis and
Frequency Balancing, then Decay




Training Schedule

| Correct  Negative
Learning Train Train

Phase Epochs

4
.

0.1 - 0.01
0.01 - 0.001




Quantized Weights

- Forward/Classification Pass Requires
Less Precision Than
Backward/Learning Pass

* Use One-Byte Weights for

* Use Three-Byte Weights for Learning
* +3.20

* Newton Version Currently
* ~200KB ROM (~85KB for weights)
- ~5SKB-100KB RAM
* ~3.8 Char/Second




Quantized Weights

1000}

count per bin
of width 1/16
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weight value w




Search with Context




Viterbi Beam Search

* Viterbi: Only One Path Per Node is

* Beam: Low Probability Paths are
Unlikely to Overtake Most Likely
Paths




Integration with Character
Segmentation

* Search Takes Place Over Segmentation

Hypotheses (as Well as Character
Hypotheses)

n Regular Predrctable Order

- Forward and Reverse "Delay"

Parameters Suffice to Indicate Legal
Time-Step Transitions




Integration with Word
Segmentation

* Search Also Takes Place Over Word
Segmentation Hypotheses

* Word-Space Becomes an Optional

Segment/Character

- Weighted by Probability ("SpaceProb")
Derived from Statistical Model of Gap
Sizes and Stroke Centroid Spacing

* Non-Space Hypothesis 1s Weighted by
1-SpaceProb




Word Segmentation Statistical
Model
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Integration with Context

ach Graph May or May Not Have
[etter Transition Probabilities

* "Langs" Do
* "Dicts" Do Not

* Langs and Dicts Are Created from

* Word Lists
* Regular Expression Grammar

* Multiple Langs and Dicts Are Searched
Simultaneously




Iexical Trees
(The Wrong Way)




Iexical Trees
(The Right Way)




The Problem with Trees

* Trees Are Compact at the Base...




Lexical Graphs
(Another Way)

(e.g., team, teach, peach, impeach)
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Consequences of Graph
Convergence

Probablhtles Merged (or Dlscarded)

Threshold for Mergmg
* Dicts Don't Care

* Exit Viterbi or N-Best

- "met", "net", or "wet" May Be Three Top
Choices

* All But One Eliminated by Convergence to
"..et"

 Carry N Best Paths, Regardless of
Node-Sharing
* Beam Still Works




Creating Lexical Graphs

* Word Lists
* With or Without Word-Frequencies

- Newton Uses Dicts Exclusively
(No Transition Probabilities)

* Equivalent to ~100,000 Word Dictionary

* Combined with Prefix & Suffix Dictionaries (For
Alternate, Inflectional Forms)

* Full Word- & Letter-Frequency Information
Can Be Retained if Desired (But Are Not
for Newton)




Creating Lexical Graphs

* Regular Expressions

dig [0123456789]
digmo01l [23456789]

acodenums = (digm0Ol [01] dig)

acode = { ("1=-"? acodenums "'="):40 ,
("1"? "(" acodenums ")"):60 }

phone = (acode? digmOl dig dig "-" dig dig dig digqg)




Combining Lexical Graphs:
"BiGrammars"

- Simple Telephone Context Example:

BiGrammar2 Phone

[phone.lang 1. 1. 1.]




More Complex BiGrammar

BiGrammar2 FairlyGeneral
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Geometric Context

- Estimates of Baseline, Topline, etc.
Have Too Many Pathological Failure
Modes

* Produces Erratic Recognition Failures

* Use Relative Geometric Positions and
Scaling Between Character Pairs




Recognition Ambiguity

SCUbA
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GeoContext Example

“1f”” from Uservs Table

¢
-

Error Vector of
Eight Differences

T

Minimize Error Magnitude)

P Handwriting Recognition




GeoContext Scoring

* Character Hypotheses Yield Expected

Positions from Table

* To Within a Scale Factor and Offset
* User Data Scaled to Minimize Computed
Error

* Table 1s Learned in Data-Driven Process

* Error Vector 1s Computed

* Modeled by Full Multi-Variate Gaussian
Distribution for All Characters

* Quadratic Error Term Used as Score
» Based on Inverse Grand Covariance Matrix




Old Newton Writing Example
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ANHR Writing Example

he squealed with dehght Santa brought the talkmg @ oe doll
wanted. Problem was, Joe talked like Barbie. His doll stands at

ready 1@Army tatigues, machine gun and hand grenades at(1
But it says things likg@l ant to go shopping?" The BLO has ¢
responsibility. That's Parbie Liberation Organization. Made up

more than 50 concerned parents, feminists and other activists, the
claims to have surreptitiously switched the voice boxes on 300)C

"

and Barbie dolls across the United States this holiday season.
have operatives all over the country," said one BLO member, w
wished to remain anonymous. "Our goal 1s to reveal and correct
problem of gender-based stereotyping in children's to




ANHR Extensions




Cursive Handwriting

* Use Integrated Segmentation and




Chinese/Japanese/Korean

* Decompose Ideographic Characters

'A". n ot Jaull D a
\ U1 U U AU (]

("Characters") and Strokes, with

* Net Classifies “Alphabet” of About 300
Radicals

* Structure Lexicon in Terms of Legal
Radical Sequences




User Independence vs.
Adaptation

* Individual Accuracy Drives Personal
Use and Word of Mouth




User Adaptation

* Learning Not Used in Current Product
Due to Memory Constraints

* User Independent “Walkup”
Performance 1s Maintained!




User Adaptation

* User Training Scenario
* 15-20 min. of Data Entry

a a A a % aVa

* As Little as 10-15 minutes Network Learning
* One-Shot Learning May Suffice
* May Learn During Data Entry
* Maximum of 2.5 hours
(~12 Epochs)

* Learn on the Fly

* Need System Hooks

 Can Continuously Adapt!

* Choosing What to Train On 1s Key System
Issue




The Significance of Adaptation

Character Alphanumeric
Error Rate Test Set,
(%) _ (Not in Any Training Set)
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